
Experiences in the static analysis of
embedded software

Guillaume Brat
(Kestrel Technology, Ames Division)

Experiences en analyse statique de
logiciels embarqués

Software blowup

8

1700

3

32

160

430

1

10

100

1000

10000

Voyager

(1977)

Galileo

(1989)

Cassini

(1997)

MPF

(1997)

Shuttle

(2000)

ISS

(2000)

Mission

L
in

e
s

o
f

C
o

d
e

 (
T

h
o

u
sa

n
d

s)

$165M
$125M

4 months
lost

Famous aerospace failures

>$1B

NASA Software Challenges

• Need to develop three systems for each mission:
– Flight software
– Ground software
– Simulation software

• Flight software
– Has to fit on radiation-hardened processors
– Limited memory resources
– Has to provide enough information for diagnosis
– Can be patched (or uploaded) during the mission

• Each mission has its own goals, and therefore, each software
system is unique!

• Cannot benefit from opening its source code to the public
because of security reasons.
– No open-source V&V

• Mission software is getting more complex.
– Large source code (~1 MLOC)
– The structure of the code is more complex

International Space Station

• International Space Station:
– Attitude control system, 1553 bus,

science payloads
– International development (interface

issues)
– Codes ranging from 10-50 KLOC
– A failure in a non critical system can

cause a hazardous situation
endangering the whole station

– Enormous maintenance costs
– Over 500 defects reported
– Over 3 MLOC by now

Mars mission software

• Mars Path Finder:
– Code size: 140 KLOC
– Famous bug: priority inversion

problem
• Deep Space One:

– Code size: 280 KLOC
– Famous bug: race condition problem

in the RAX software

• Mars Exploration Rovers:
– Code size: > 650 KLOC
– Famous bug: Flash memory

problem

How is the Software Verified?

• Testing, testing, testing…
• Mars missions: high-fidelity test bench

– Runs 24 hours a day
– 8 hour test sessions: lost if a runtime error

occurs
• Space Station:

– Critical software: on-ground simulator
maintained at Marshall Space Center

– Payloads:
• Independently verified by contractors
• NASA test requirement document

How effective is this?

• Badly re-initialized state variable for MPL: caused the
crash of the lander ($150M)

• Unit mismatch for MCO: caused the orbiter to miss its
orbit insertion and burn during re-entry ($85M)

• Thread priority inversion problem for MPF: 24 hours of
science data lost

• Flash memory problem for MER: rover paralyzed
during several days

• Science mission for the ISS currently under validation:
– Passes NASA test requirements
– But… 500+ defects reported

Static Analysis

Static analysis offers compile-time techniques for predicting
safe and computable approximations to the set of values

arising dynamically at run-time when executing the program

the analysis is done
without executing the program

all possible values
(and more) are computed

We use abstract interpretation techniques
to extract a safe system of semantic equations

which can be resolved using lattice theory techniques
to obtain numerical invariants for each program point

Covered Defect Classes

• Static analysis is well-suited for catching runtime errors,
e.g.:
– Array-out-bound accesses
– Un-initialized variables/pointers
– Overflow/Underflow
– Invalid arithmetic operations

• Defect classes for Deep Space One:
– Misuse: array out-of-bound, pointer mis-assignments
– Initialization: no value, incorrect value
– Assignment: wrong value, type mismatch
– Undefined Ops: FP errors (tan(90)), arithmetic (division by zero)
– Omission: case/switch clauses without defaults
– Scoping Confusion: global/local, static/dynamic
– Argument Mismatches: missing args, too many args, wrong types,

uninitialized args
– Finiteness: underflow, overflow

Software Development Process

Software
Architectural Design

System
Integration

System
Architectural Design

System
Requirements

Software
Requirements Analysis

Software
Qualification Testing

Software
Unit Testing

Software Coding

Software
Detailed Design

Software Integration

System
Qualification Testing

STATIC
ANALYSIS

Research Process

Experiments on
real NASA code

Identification of
technical gaps

Implementation of
research prototype

Identification of
commercial tools

Our goal was to assess the capabilities of static analysis and
identify the technical gaps to make it usable in NASA missions.

PolySpace
C-verifier

MPF DS1 ISS
MER

precision scalability usability

CGS: a scalable, precise analyzer

PolySpace C-Verifier

PolySpace C-Verifier finds runtime errors in C programs.

It works like a sophisticated compiler.

Partial Error Coverage

Test cases & drivers

Integration
Testing

Unit-level
Testing

Conventional Testing

Control & Data Flow Analysis

Source Code Checking
Compiler Front End

Software Safety Analysis
Propagation Algorithm for
Identifying Run-Time Errors

Total Error Coverage

No input cases! No input drivers!

Sophisticated Static Analysis

color-coded reporting:
Green always correct
Red always incorrect
Orange may be incorrect
Gray never executed

Analysis time ~ e precision

Simple run-time error reporting

MER CVS

C-Verifier

MER TEAM

New error: report it!

VERIFICATION TEAM

Quick analysis: 30 minutes
Deep analysis: 2-3 hours

30 KLOCS
modules

analysis
report

studycode

void getData (T* p) {
 if (flag == TRUE) {
 p->data = ...;
 p->status = 1;
 }
 else
 sendEvrMsg(“error”);
}
…
T state;
getData(&state);
sendData (state->data);
/* unreachable */

STATIC ANALYSIS OF MER

Experimental results

NIVOBAI
OVFL

NIVErrors
3.2KLocs17KLocs25KLocsMax Size

bc, reu, pyro, pwr,
dat, adc, pas, imu,
mcas, rpdu, bcp, btp,
…

HLRCACS+EDLModules

Under-
development

UntestedStableMaturity
650KLocs40KLocs200KLocsSize
CCCLanguage

MERISSMPFProject

Performance

• Pyro + Pwr modules:
– 1st pass: O1, 54 mn, 4610 green, 601 orange
– 2nd pass: O1, 44 mn, 4758 green, 409 orange
– 2nd pass: O2, 34 mn, 4758 green, 409 orange
– No significant red (obvious infinite loops)

• Dat + (adc, pas, imu, mcas, rpdu, pwr, pyro, bcp, btp)

– Quick analysis: 30 mn
– Un-initialized variable (not yet fixed)
– Returning the address of a local variable (already fixed)
– Overflow in constant expression (already fixed)

A Role for Static Analysis

• Extensive experiments with PolySpace
Verifier:
– Minors bugs found in MER
– Serious out-of-bounds array accesses found in an

ISS Science Payload
• Absence of runtime errors (80% precision)
• Useful: yes
• Effective: no

– It takes 24 hours to analyze 40 KLOC
– Difficulty to break down large systems into small

modules

NASA Requirements

• Scalability:
– Analyze large systems in less than 24 hours
– Analysis time similar to compilation time for

mid-size programs
• Precision:

– At least 80%
– Informative: the analysis provides enough

information to diagnose a warning

Practical Static Analysis

C Global Surveyor
(NASA Ames)

Scalability (KLOC)

Precision

1000

500

50

80% 95%

PolySpace
C-Verifier

DAEDALUS
100%

Coverity

Klocwork

days
hours

CERTIFIERS

seconds

DEBUGGERS

minutes

C Global Surveyor

• Prototype analyzer
– Based on abstract interpretation
– specialized for NASA flight software

• Covers major pointer manipulation errors:
– Out-of-bounds array indexing
– Un-initialized pointer access
– Null pointer access

• Keeps all intermediate results of the
analysis in a human readable form: huge
amount of artifacts

Abstract Interpretation

Program
semantics

Abstract
Semantics

Programming
Language
Definition

Defines operations allowed in the language:
assignments, conditionals, loops, functions, …

assigns meaning to a program
on a suitable concrete domain

Concrete
domain

Abstract
domain

Models some properties of concrete computations
Forgets about remaining information

γ concretization
abstraction α

Program Verification

• Check that every operation of a program
will never cause an error (division by zero,
buffer overrun, deadlock, etc.)

• Example: int a[1000];

for (i = 0; i < 1000; i++) {

 a[i] = … ; // 0 <= i <= 999

}

a[i] = … ; // i = 1000;buffer overrun

safe operation

Simple Example

E5 = E2 ∩ [1000, +∞[

E1 = {n ⇒ Ω}

E4 =〚n = n + 1〛E3

E3 = E2 ∩]-∞, 999]

E2 =〚n = 0〛E1 ∪ E4

1

2

3

4

5

n = 0;

while n < 1000 do

 n = n + 1;

end

exit

[0,1000]

[0,999]

[1,1000]

1000

]-∞,+∞[

Simple Example

n = 0;

while n < 1000 do

 n = n + 1;

end

exit

[0,1000]

[0,999]

[1,1000]

1000

]-∞,+∞[

In effect, the analysis
has automatically
computed numerical
invariants!

MPF Flight Software Family

Thread Thread Thread

Queue

Heap
Queue

Shallow

Large

MPF Flight Software Family

assign (double *p, double *q, int n) {

 int i;

 for (i = 0; i < n; i++)

 p[i] = q[i];

}

assign (A, B, 10) assign (&pS->f, &A[2], m)

10...1000 call sites

Thousands of such functions
Almost all of them contain loops

The CGS Solution

• Extensive representation using intervals
– Some use of DBMs
– Adaptive state variable clustering for scalability

• One level of context-sensitivity
• Computation of function summaries for

speeding up the interprocedural propagation
• Parallel analyses over clusters of processors

Fast Context Sensitivity

• Context-sensitivity is required
• We can’t afford performing 1000 fixpoint

iterations with widening and narrowing for each
function

• Compute a summary of the function using a
relational numerical lattice

access(p[i], 0 <= i < n)

access(q[i], 0 <= i < n)

Implementation of CGS

Database

Equations
for file1.c

Equations
for file2.c

Cluster of machines

Analyze
function f

Analyze
function g

Working with a Database

• We use PostgreSQL
• Mutual exclusion problems are cared for by

the database
• Simple interface using SQL queries
• Efficient communications require index

structures (B-Trees):
– Populating tables is slower
– Difficult to manage

• Granularity problems: splitting up large
tables into smaller ones

Parallel implementation

• We use the Parallel Virtual Machine (PVM)
• High-level interface for process creation

and communication
• Allows heterogeneous implementation:

currently a mix of C and OCaml
• Remote debugging is extremely difficult
• Design is difficult:

– Scheduling policies
– Granularity of computations

Effectiveness of
Parallelization

Analysis Times

0

2000

4000

6000

8000

10000

12000

1 2 4 6 8

CPUs

S
e

c
o

n
d

s

DS1

MPF

The I/O Bottleneck

• The performance curve flattens: overhead of
going through the network

• MER takes a bit less than 24 hours to analyze:
– 70% of the time is spent in the interprocedural

propagation
– I/O times dominate (loading/unloading large tables)

• Under investigation: caching tables on machines
of the cluster and using PVM communication
mechanism (faster than concurrent database
access)

Experimental Results

2080%550550MER

2.580%280280DS1

1.580%140140MPF

8-1280%20140MPF

Analysis
Time

(hours)

PrecisionMax Size
Analyzed

Size
(KLOC)

Commercial tool C Global Surveyor

Conclusion

• NASA a besoin de meilleurs outils de vérification
• L’usage d’analyseurs statiques commerciaux s’est révélée

décevante
– Problèmes de passage à l’ échelle
– Problèmes de précision

• Nous avons donc dévelopé notre propre outil d’analyse statique
pour C
– Passe à l’ échelle
– Meilleurs temps d’analyse
– Précision équivalente

• Prochaine étape: C++

